

COMPOSIÇÃO QUÍMICA

С	Mn	Si	Cr	Al	P	S
0,17 - 0,24	0,30 - 0,60	0,40 máx			0,04 máx.	0,05 máx.
0,18 - 0,23	0,60 - 0,90	0,15 - 0,35	0,30 - 0,40	0,02 - 0,05	0,025 máx.	0,02 - 0,04

SIMILARIDADES

SAE 1020, W.Nr. 1,1151 DIN C22E / CK22 • UNS G10200 VT20 • GERDAU 1020

CONDICÕES DE FORNECIMENTO

Sem tratamento térmico / Normalizado / alívio de tensão Dureza até ~ 200HB.

CORES DE IDENTIFICAÇÃO

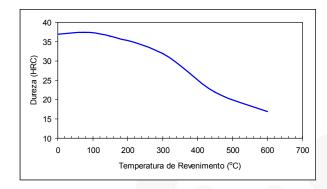
Generalidades

O aço GGD 1020 é um dos aços ao carbono mais comum utilizado como aço para cementação com excelente relação custo benefício comparado com aços mais ligados para o mesmo propósito. Possui excelente plasticidade e soldabilidade. Após cementação é beneficiado, mas possui menor capacidade de endurecimento, comparado com o GGD 8620, por exemplo.

Aplicações

É utilizado em componentes mecânicos de uso como engrenagens, eixos, virabrequins, eixos-comando, pinos guia, anéis de engrenagem, colunas, catracas, capas.

Forjamento


O aço GGD 1020 deve ser realizado na temperatura mínima de 900°C e máxima de 1260°C.

Tratamento Térmico

Recozimento: O tratamento deve ser feito na temperatura entre 850 - 870°C por no mínimo I hora para cada 25 mm. Resfriar lentamente no forno.

Normalização: O tratamento deve ser feito na temperatura próxima de 920 -950°C por no mínimo I hora para cada 25 mm. Resfriar ao ar. Em casos especiais pode se utilizar ar forçado.

Cementação: Podem ser utilizados os processos de cementação em caixa, a gás ou em banho de sal. A temperatura deve estar entre 900 - 925°C. O tempo de cementação deve ser controlado em função do potencial de carbono e da profundidade de endurecimento especificados. A cementação deve ser seguida pelo beneficiamento.

Curva de Revenimento. Têmpera a partir de 845°C.

Têmpera: A têmpera pode ser realizada diretamente após a cementação, bastando para isto diminuir a temperatura até 840 – 850°C, manter pelo tempo necessário para homogeneizar a temperatura na seção transversal e resfriar em água. A têmpera pode ser realizada também após a cementação com resfriamento do componente até a temperatura ambiente. Neste caso, utilizar o mesmo procedimento descrito.

Revenimento: Deve ser realizado imediatamente após a têmpera quando a temperatura atingir cerca de 70°C. O revenimento é realizado em temperaturas entre 150 - 200°C. No revenimento não há queda significativa da dureza, mas se garante uma melhor resistência à fratura e a formação de trincas superficiais na retífica.

Nitretação: Este aço pode ser nitretado para elevar a resistência ao desgaste pelo endurecimento superficial. Para a nitretação o componente deve ser no estado recozido. A nitretação pode ser por processo gasoso ou de plasma. A presença da Camada Branca é imprescindível, com uma espessura superior a 12 µm.